A waste mapping model in a UK ready-to-reheat (RTR) food manufacturing site: implications for waste reduction and process efficiency

Rhiannon Facey-Richards, David Owens and Elizabeth C. Redmond

ZERO2FIVE Food Industry Centre Research Group, Cardiff Metropolitan University, Wales, United Kingdom.

*Corresponding author: eredmond@cardiffmet.ac.uk

Introduction

In UK food-businesses, the true cost of waste can be up to 4% of turnover (WRAP, 2019a). However, resource efficiency initiatives have shown that by implementing 'materials-reduction-measures' as part of a wider resource efficiency programme, overall waste can be reduced by 25% (WRAP, 2013). This is critical in food businesses where margins can be low, manufacturing processes complex and processes inefficient, which all may contribute to food-waste production.

Waste mapping can assist a food-business control processes, drive efficiency measures and reduce waste (food/non-food), forming the framework of a circular economy model (see Figure 1) (WRAP, 2019b).

Figure 1. A Circular Economy (Source: WRAP, 2019b)

Purpose

The purpose of this research is to investigate and highlight the points of food-waste generation in a ready-to-reheat (RTR) chilled food business.

Methods

• In-depth observational audits from goods-in, through the process, at point-of-packing, to despatch and the waste yard were undertaken in a RTR food-manufacturing business, resulting in >2,100 data-capture-points.
• Fourteen waste control points (WCPs) associated with food-waste generation were identified.
• Interventions for recording and data analysis were implemented and waste was tracked over a specified time period.

References


Results

Observational-audits facilitated generation of a company-specific waste mapping template (for example see Figure 2) based on a review and analysis of the factory layout (Figure 3). The waste mapping template included measurable critical waste points with waste-reduction potential.

Overall, data capture focused on four WCPs in the high-care food production area (although measurements were analysed across all WCPs) (see Table 1 for identified four WCPs).

Figure 2. Waste mapping template for generation of waste control points in food manufacturing.

Table 1. WCPs for data collection.

<table>
<thead>
<tr>
<th>HIGH CARE PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat production (WCP 7)</td>
</tr>
<tr>
<td>Decant (Kitchen/Chiller) (WCP 8)</td>
</tr>
<tr>
<td>Line Waste (7 lines) (WCP 9)</td>
</tr>
<tr>
<td>Technical (WCP 10)</td>
</tr>
</tbody>
</table>

During a two month period it was observed at one WCP the amount of food waste generated was 3,000kg with a monetary value of £2,500. This was attributed to planning and demand anomalies.

At another WCP, over the same period, floor waste e.g. food dropped on floor/spillages, equated to 2,700kg, all of which was unusable.

Figure 3. An example of a high care factory layout (Source: Huss and Ryder, 2003).

Figure 4. Images of high-care waste observations.

As a result of waste mapping determination, the manufacturer improved waste recording from 20% to 60% of total recorded waste, with month-on-month improvements.

Table 2. Improvements in waste recording.

<table>
<thead>
<tr>
<th>Percentage improvement</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>20%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Waste mapping in a food business is specific to an organisation’s manufacturing site, products and processes. It can be invaluable tool to establish food waste in a process and highlighting processing inefficiencies, and subsequent improvements in production efficiencies and monetary gain.

Figure 4 highlights when waste segregation is not managed effectively it can lead to implications for higher cost in waste disposal.

Conclusion

Waste-mapping is invaluable in driving process efficiency, process control, improving business and environment sustainability, reducing waste, and consequently improving business profitability.